Windows

Делаем портативное зарядное устройство. Портативное зарядное устройство своими руками Как сделать портативное зарядное устройство для телефона


Этот мастер-класс покажет вам, как можно получить 5 В для USB из батареи 9 В, и с помощью этого зарядить мобильный телефон.
На фотографии собранная схема в работе, но это не конечный вариант, так как я сделаю для него ещё и корпус в конце.
Итак, давайте приступим к изготовлению.

Материалы


На снимке компоненты, необходимые для сборки зарядного устройства, в том числе один пустой корпус от старой батарейки, в котором и будет встроено устройство.
Комплектующие и материалы:
  • Старая батарейка для корпуса.
  • Порт USB.
  • Микросхема регулятор 7805.
  • Один зеленый светодиод.
  • Резисторы 220R - 3 шт.
  • Припой.
  • Провода.

Схема


На схеме показана распиновка регулятора 7805, USB разъема и собственно сама схема простого преобразователя.

Сборка зарядника по схеме


После разборки старой батареи, к основанию с разъемом можно припаивать детали. Собирается все за пять минут, и я думаю, что в пояснении ничего не нуждается, кроме резисторов, подключенных в средними контактам USB - Data+ и Data-. А нужны они для того, чтобы сам сотовый телефон понимал, что он подключен к заряднику, а не к компьютеру для передачи данных.
В настройки схема не нуждается и начинает работать сразу.
Светодиод показывает наличие протекании зарядного тока. Если он не горит, значит батарея полностью разрядилась, либо телефон полностью зарядился.

Здравствуйте дорогие друзья!

Сегодня я расскажу вам как сделать своими руками "Портативное USB зарядное устройство".

Для этого нам понадобится:

1. Автомобильное зарядное USB устройство в прикуриватель.

2. Четыре проводочка.

3. Маленький включатель вкл/выкл. Его я взял из старой настольной лампы. Но он оказался не практичным и я его заменил на включатель от светильничка.

4. Три аккумуляторных батарейки "Крона".

5. Коробочка от кофе "Fort",или от чего либо. Нужна либо железная либо пластмасовая.

6. Клеевій пистолет.

И так: Берём нашу автомобильную USB зарядку в прикуриватель,розбираем её,достаём плату. Это и есть самая главная часть нашей портативной зарядки. С одной стороны этой платы вы увидите пружинку и маленький кусочек железной пластинки. Пружинка посредине это всегда плюс а железная пластинка сбоку это всегда минус. Пружинка может быть просто припаяна к плате или к проводоку а проводок уже к плате. Так же и с этой железкой сбоку.. Если пружинка припаяна к плате тогда берём аккуратненько отпаеваем её и на её место припаеваем проводок. Потом так же и с этой железкой. Если же пружинка припаяна к проводку то просто отпаеваем пружинку от проводка. Так же и с этой железкой.После того как припаяли проводки к плате отлажеваем её пока в сторону. Приступаем к изготовлению клемы которая нам понадобится что бы подключать батарейку. Готовую клему можно снять из старых детских игрушек или из чего либо где приманялась батарейка типа "Крон". Или же её можно изготовить самому. Для этого берём одну батарейку "Крон" снемаем с неё клуму,переворачиваем её,берём флюс для пайки,мокаев него ватную палочку и обезжириваем контакты. После чего берём проводочки и припаеваем их к контактам. После того как припаяли берём клеевый пистолет и наносим клей на место где припаяли проводочки. Таким образом мы просто делаем изоляцию. Потом берём нашу клему и поделючаем к ней батарейку. Делаем это для того что бы убедится где у нас плюс а где минус. Когда убедились где плюс а где минус берём нашу плату к которой мы припаевали проводочки вместо пружинки с железкой, и скручиваем проводочки минус с минусом и аккуратненько изолируем проводочки которые мы скрутили изолентой. А плюс мы пустим через включатель. Для этого берём наш включатель в нём есть два контакта к одному припаеваем проводок который идёт от нашей платы а к другому припаеваем проводок который идёт от клемы. Теперь наше зарядное устройство почти готово. Осталось токо поместить это всё в корпус.
Для этого берём нашу коробочку в моём случаи это коробочка "Аптечка АРМ" для ремонта пневматических шин.. Проделываем отверстие под USB.
После чего проделываем отверстие под наш включатель.

Теперь берём наши внутренности. А это наша плата,включатель, и клема. И устанавлеваем это всё в нутри коробочки. Крепим плату ко дну коробочки при помощи клеевого пистолета как и наш включатель. Его тоже крепим к коробочке при помощи клеевого пистолета.
Теперь подключаем нашу батарейку, закрываем коробочку. Подключаем телефон,включаем зарядку и наш телефон заряжается. P.S Входная мощность автомобильных USB зарядных устройств в прикуриватель всего 12В поэтому не вкоем случаи не подключайте ёё к источникам питания свыше 12В в таком случаи она просто згорит. Мощность батарейки "Крон" которую я использовал для даного портативного зарядного устройства всего 9В этого вполне достаточно что бы зарядить телефон,айфон,фотоапарат,планшет и т.д. приблезительно 2-3 раза в зависимости от мощности вашего аккумулятора..после чего придётся менять батарейку. У меня аккумулятор в телефоне мощностью 3000 mAh поэтому батарейки "Крон" хватает чтобы токо поддерживать заряд аккумулятора а не полностью зарядить его. Поэтому я заменил батарейку "Крон" на 12В аккумулятор,чего вполне достаточно что бы зарядить телефон. Для этого просто изготавливаем 2 клемы из батареек "Крон" одну из них припаеваем к аккумулятору и всё и просто подключаем в наше портативное зарядное устройство. Но что бы не покупать каждый раз новую батарейку я бы советовал вам приобрести зарядное устройство для батареек "Крон" и когда у вас одна батарейка сядит вы её ставите на зарядку а другую ставите в ваше портативное зарядное. Или же зарядное устройство для батареек "Крон" вы сможете сделать своими руками. А как? Об это я расскажу вам в следующем выпуске. Всем пока,всего хорошего. Если возникнут вопросы пишите на мой ящик.

Создание своими руками солнечной USB зарядки для телефона — один из самых интересных и полезных проектов на . Сделать самодельное зарядное устройство не слишком сложно — необходимые компоненты не очень дорогие и их легко достать. Солнечные зарядные USB устройства идеально подходят для зарядки небольших устройств, например, телефона.


Слабым местом всех самодельных солнечных зарядок являются аккумуляторы. Большинство собираются на базе стандартных никель-металл-гидридных аккумуляторов — дешёвых, доступных и безопасных в эксплуатации. Но к сожалению у NiMH аккумуляторов слишком низкие напряжение и ёмкость, чтобы их можно было серьёзно рассматривать в качестве , энергопотребление которых с каждым годом только растёт.


Например, аккумулятор iPhone 4 на 2000 мА*ч ещё можно полностью перезарядить от самодельной солнечной зарядки с двумя или четырьмя аккумуляторами АА, но вот iPad 2 оснащён аккумулятором на 6000 мА*ч, который уже не так просто перезарядить с помощью подобного зарядного устройства.


Решением данной проблемы является замена никель-металл-гидридных аккумуляторов на литиевые.


Из этой инструкции вы узнаете, как своими руками сделать солнечную USB зарядку с литиевым аккумулятором. Во-первых, по сравнению с это самодельное зарядное устройство обойдётся вам очень дёшево. Во-вторых, собрать его очень просто. И самое главное — эта литиевая USB зарядка безопасна при эксплуатации.

Шаг 1: Необходимые компоненты для сборки солнечной USB зарядки.


Электронные компоненты:

  • Солнечная батарея на 5 В или выше
  • Литий-ионный аккумулятор на 3,7 В
  • Контроллер зарядки литий-ионного аккумулятора
  • Повышающая USB схема постоянного тока
  • Разъём 2,5 мм с креплением на панель
  • Разъём 2,5 мм с проводом
  • Диод 1N4001
  • Провод

Конструкционные материалы:

  • Изолента
  • Термоусадочные трубки
  • Двухсторонняя лента из пеноматериала
  • Припой
  • Жестяная коробка (или другой корпус)

Инструменты:

  • Паяльник
  • Пистолет для склеивания горячим клеем
  • Дрель
  • Дремель (не обязателен, но желателен)
  • Кусачки
  • Инструмент для зачистки проводов
  • Помощь друга

В этом руководстве рассказывается как сделать зарядное устройство для телефона на солнечной энергии. Вы можете отказаться от использования солнечных батарей и ограничиться только изготовлением обычной USB зарядки на литий-ионных аккумуляторах.


Большинство компонентов для этого проекта можно купить в интернет магазинах электроники, но повышающую USB схему постоянного тока и контроллер заряда литий-ионного аккумулятора найти будет не так просто. Далее в этом руководстве я расскажу, где можно достать большинство необходимых компонентов и для чего каждый из них нужен. Исходя из этого вы сами решите какой вариант вам лучше всего подходит.


Шаг 2: Преимущества зарядных устройств с литиевыми аккумуляторами.


Может быть вы не догадываетесь, но скорей всего литий-ионный аккумулятор прямо сейчас лежит у вас в кармане или на столе, а может и в вашем кошельке или . В большинстве современных электронных устройств используются литий-ионные аккумуляторы, характеризующиеся большой ёмкостью и напряжением. Их можно перезаряжать множество раз. Большинство аккумуляторов формата АА по химическому составу являются никель-металл-гидридными и не могут похвастаться высокими техническими характеристиками.

С химической точки зрения разница между стандартным никель-металл-гидридным аккумулятором АА и литий-ионным аккумулятором заключается в химических элементах, содержащихся внутри элемента питания. Если вы посмотрите на периодическую таблицу элементов Менделеева, то увидите, что литий находится в левом углу рядом с самыми химически активными элементами. А вот никель расположен в середине таблицы рядом с химически неактивными элементами. Литий обладает такой высокой химической активностью из-за того, что у него только один валентный электрон.


И как раз именно по этой причине на литий много нареканий — иногда он может выходить из-под контроля из-за своей высокой химической активности. Несколько лет назад компания Sony, лидер в производстве аккумуляторов для ноутбуков, изготовила партию некачественных аккумуляторов для ноутбуков, некоторые из которых самопроизвольно возгорались.

Именно поэтому при работе с литий-ионными аккумуляторами мы должны придерживаться определенных мер предосторожности — очень точно поддерживать напряжение во время зарядки. В этой инструкции используются аккумуляторы на 3,7 В, которые требуют заряжающего напряжения 4,2 В. При превышении или уменьшении этого напряжения химическая реакция может выйти из-под контроля со всеми вытекающими последствиями.

Вот почему при работе с литиевыми батареями необходимо проявлять предельную осторожность. Если обращаться с ними осторожно, то они достаточно безопасны. Но если вы будете делать с ними недопустимые вещи, то это может привести к большим неприятностям. Поэтому их следует эксплуатировать только строго по инструкции.

Шаг 3: Выбор контроллера заряда литий-ионного аккумулятора.


Из-за высокой химической реактивности литиевых аккумуляторов вы должны быть на сто процентов уверены, что схема контроля напряжения заряда вас не подведёт.

Хотя можно изготовить собственную схему контроля напряжения, но лучше просто купить уже готовую схему, в работоспособности которой вы будете уверены. На выбор доступны несколько схем контроля заряда.

На данный момент Adafruit выпускает уже второе поколение контроллеров заряда для литиевых аккумуляторов с несколькими доступными значениями входящего напряжения. Это весьма неплохие контроллеры, но у них слишком большой размер. Вряд ли на их базе получится собрать компактное зарядное устройство.

В интернете можно купить небольшие модули контроллеров зарядки литиевых аккумуляторов, которые и используются в данном руководстве. На базе этих контроллеров я также собрал множество других . Они мне нравятся за компактность, простоту и наличие светодиодной индикации заряда аккумулятора. Как и в случае с Adafruit, при отсутствии солнца литиевый аккумулятор можно зарядить через USB порт контроллера. Возможность зарядки через USB порт является крайне полезной опцией для любого зарядного устройства на солнечных батареях.

Независимо от того, какой контроллер вы выбрали, вы должны знать как он работает и как его правильно эксплуатировать.

Шаг 4: USB порт.


Через USB порт можно заряжать большинство современных устройств. Это стандарт во всём мире. Почему бы просто не подключить USB порт напрямую к аккумулятору? Зачем нужна специальная схема для зарядки через USB?

Проблема заключается в том, что по стандарту USB напряжение составляет 5 В, а литий-ионные аккумуляторы, которые мы будем использовать в данном проекте, имеют напряжение всего 3,7 В. Поэтому нам придётся воспользоваться повышающей USB схемой постоянного тока, которая увеличивает напряжение до достаточного для зарядки различных устройств. В большинстве коммерческих и самодельных USB зарядок, наоборот, используются понижающие схемы, так как они собираются на базе аккумуляторов на 6 и 9 В. Схемы с понижением напряжения более сложные, поэтому в солнечных зарядных устройствах их лучше не применять.


Схема, которая применяется в данной инструкции, была выбрана в результате длительного тестирования различных вариантов. Она практически идентична схеме Minityboost Adafruit, но стоит дешевле.

Конечно вы можете купить онлайн недорогое зарядное USB устройство и разобрать его, но нам нужна схема, преобразующая 3 В (напряжение двух батареек АА) в 5 В (напряжение на USB). Разборка обычной или автомобильной USB зарядки ничего не даст, так как их схемы работают на понижение напряжения, а нам наоборот нужно повышать напряжение.

Кроме того следует учесть, что схема Mintyboost и используемая в проекте схема способны работать с гаджетами Apple, в отличии от большинства других зарядных USB устройств. Устройства от Apple проверяют информационные пины на USB, чтобы знать куда они подключены. Если гаджет Apple определит, что информационные пины не работают, то он откажется заряжаться. У большинства других гаджетов такая проверка отсутствует. Поверьте мне — я перепробовал множество дешёвых схем зарядки с интернет-аукциона eBay — ни от одной из них мне не удалось зарядить свой айфон. Вы же не хотите, чтобы от вашей самодельной USB зарядки нельзя было заряжать гаджеты Apple.

Шаг 5: Выбор аккумулятора.

Если вы немного погуглите, то обнаружите огромный разных размеров, ёмкостей, напряжений и стоимости. Поначалу во всём этом многообразии будет несложно запутаться.

Для нашего зарядного устройства мы будет использовать литий-полимерный (Li-Po) аккумулятор на 3,7 В, который очень напоминает аккумулятор для айпода или мобильного телефона. Действительно, нам нужен аккумулятор исключительно на 3,7 В, так как схема зарядки рассчитана именно на это напряжение.

То, что аккумулятор должен быть оснащён встроенной защитой от перезаряда и переразряда, даже не обсуждается. Обычно эта защита называется «PCB protection» («схема защиты»). Поищите по этим ключевым словам на интернет-аукционе eBay. Из себя она представляет всего лишь небольшую печатную плату с чипом, которая защищает аккумулятор от чрезмерного заряда и разряда.

При выборе литий-ионного аккумулятора смотрите не только на его ёмкость, но и на его физический размер, который преимущественно зависит от выбранного вами корпуса. В качестве корпуса у меня выступила жестяная коробка Altoids, так что я был ограничен в выборе аккумулятора. Я сначала думал купить аккумулятор на 4400 мА*ч, но из-за его больших размеров мне пришлось ограничиться аккумулятором на 2000 мА*ч.

Шаг 6: Подсоединение солнечной батареи.


Если вы не собираетесь делать зарядное устройство с возможностью подзарядки от солнца, то можете пропустить этот этап.

В этом руководстве используется солнечная батарея в жестком пластиковом корпусе на 5,5 В и 320 мА. Вам подойдет любая большая солнечная батарея. Для зарядного устройства лучше всего выбирать батарею, рассчитанную на напряжение 5 - 6 В.


Возьмите провод за кончик, разделите его на две части и немного зачистите концы. Провод с белой полоской отрицательный, а полностью чёрный провод — положительный.


Припаяйте провода к соответствующим контактам с обратной стороны солнечной батареи.

Закройте места пайки с помощью изоленты или горячего клея. Это защитит их и поможет снизить нагрузку на провода.

Шаг 7: Сверлим жестяную коробку или корпус.


Так как в качестве корпуса я использовал жестяную коробку Altoids, то мне пришлось немного поработать дрелью. Кроме дрели нам понадобится ещё и такой инструмент, как дремель.

Перед тем, как начать работу с жестяной коробкой, сложите в неё все компоненты, чтобы убедиться на практике, что она вам подходит. Продумайте, как лучше всего в ней разместить компоненты, и только потом сверлите. Места расположения компонентов можете обозначить маркером.


После обозначение мест можете приниматься за работу.

Вывести USB порт можно несколькими способами: сделать небольшой надрез прямо вверху на коробке или же сбоку на коробке просверлить отверстие соответствующего размера. Я решил сделать отверстие сбоку.


Сначала приложите USB порт к коробке и обозначьте его место. Внутри обозначенной области просверлите дрелью два или больше отверстий.


Зашлифуйте отверстие дремелем. Обязательно соблюдайте технику безопасности, чтобы не травмировать пальцы. Ни в коем случае не держите коробку в руках — зажмите её в тиски.

Просверлите отверстие диаметром 2,5 мм для USB порта. При необходимости расширьте его с помощью дремеля. Если вы не планируете устанавливать солнечную батарею, то в отверстии 2,5 мм нет необходимости!

Шаг 8: Подключение контроллера зарядки.


Одна из причин, по которой я выбрал этот компактный контроллер зарядки, это его высокая надёжность. У него четыре контактные площадки: две впереди рядом с портом mini-USB, куда подаётся постоянное напряжение (в нашем случае от солнечных батарей), и две сзади для аккумулятора.


Чтобы подключить разъём 2,5 мм к контроллеру зарядки, необходимо подпаять два проводка и диод от разъёма к контроллеру. Кроме того желательно воспользоваться термоусадочными трубками.


Зафиксируйте диод 1N4001, контроллер зарядки и разъём 2,5 мм. Расположите разъём перед собой. Если смотреть на него слева направо, то левый контакт будет отрицательным, средний — положительным, а правый вообще не используется.


Один конец проводка припаяйте к отрицательной ножке разъёма, а другой к отрицательному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Ещё один проводок припаяйте к ножке диода, рядом с которой нанесена метка. Припаивайте его как можно ближе к основанию диода, чтобы сэкономить побольше свободного места. Припаяйте другую сторону диода (без метки) к средней ножке разъёма. Опять же, постарайтесь припаять максимально близко к основанию диода. И в завершение подпаяйте проводок к положительному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Шаг 9: Подключение аккумулятора и USB схемы.


На данном этапе потребуется всего лишь подпаять четыре дополнительных контакта.


Нужно подсоединить аккумулятор и USB схему к плате контроллера зарядки.


Сначала отрежьте несколько проводков. Подпаяйте их к положительным и отрицательным контактам на USB схеме, которые расположены на нижней стороне платы.


После этого соедините вместе эти проводки с проводками, идущими от литий-ионного аккумулятора. Убедитесь, что вы соединили вместе отрицательные проводки и соединили вместе положительные проводки. Напоминаю, что красные провода у нас положительные, а чёрные — отрицательные.


После того, как вы скрутили проводки вместе, приварите их к контактам на аккумуляторе, которые находятся на обратной стороне платы контроллера зарядки. Перед пайкой проводки желательно продеть в отверстия.

Теперь можно поздравить вас — вы на 100% справились с электрической частью этого проекта и можете немного расслабиться.


На этом этапе неплохой идеей будет проверить работоспособность схемы. Так как все электрические компоненты подсоединены, то всё должно работать. Попробуйте зарядить айпод или любой другой гаджет, оснащённый USB портом. Устройство не будет заряжаться, если аккумулятор разряжен или неисправен. Кроме того поместите зарядное устройство на солнце и посмотрите будет ли заряжаться аккумулятор от солнечной батареи — при этом должен загореться маленький красный светодиод на плате контроллера зарядки. Также вы можете зарядить аккумулятор через mini-USB кабель.

Шаг 10: Электрическая изоляция всех компонентов.


Перед тем, как разместить все электронные компоненты в жестяной коробкой, мы должны быть уверены, что она не сможет стать причиной короткого замыкания. Если у вас пластиковый или деревянный корпус, то пропустите этот этап.

На дне и по бокам жестяной коробки наклейте несколько полос изоленты. Именно в этих местах будет находиться USB схема и контроллер зарядки. На фотографиях видно, что контроллер зарядки у меня остался незакреплённым.

Постарайтесь тщательно всё заизолировать, чтобы не произошло короткого замыкания. Перед тем, как наносить горячий клей или наматывать изоленту, убедитесь в прочности пайки.

Шаг 11: Размещение электронных компонентов в корпусе.


Так как 2,5 миллиметровый разъём необходимо закрепить с помощью болтов, то разместите его в первую очередь.



На моей USB схеме сбоку имелся переключатель. Если у вас такая же схема, то сначала проверьте работает ли переключатель, который нужен для включения и отключения «режима зарядки».


И наконец нужно закрепить аккумулятор. С этой целью лучше использовать не горячий клей, а несколько кусочков двустороннего скотча или изоленты.


Шаг 12: Эксплуатация самодельного зарядного устройства на солнечных батареях.


В завершение поговорим о правильной эксплуатации самодельной USB зарядки.

Заряжать аккумулятор можно через mini-USB порт или от солнца. Красный светодиод на плате контроллера зарядки указывает на процесс зарядки, а синий на полностью заряженный аккумулятор.

Пролог


На идею постройки этой конструкции меня натолкнул полёт в самолёте Airbus A380, в котором под подлокотником каждого кресла имеется разъём USB, предназначенный для питания USB-совместимых устройств. Но, такая роскошь есть не во всех самолётах, а уж тем более её не найти в поездах и автобусах. А я уже давно мечтаю пересмотреть от начала до конца сериал «Друзья». Так почему бы не убить сразу двух зайцев – посмотреть сериал и скрасить время в пути.

Дополнительным стимулом к постройке данного девайса стало открытие .


Техническое задание

Портативое Зарядное Устройство (ЗУ) должно обеспечить следующие возможности.

  1. Время работы в автономном режиме под номинальной нагрузкой, не менее – 10 часов. Литий-ионные аккумуляторы большой ёмкости, как нельзя лучше подходят для этого.

  2. Автоматическое включение и отключение ЗУ в зависимости от наличия нагрузки.

  3. Автоматическое отключение ЗУ при критическом разряде аккумулятора.

  4. Возможность принудительного включения ЗУ при критическом разряде аккумулятора, в случае необходимости. Я полагаю, что в дороге может сложиться такая ситуация, когда аккумулятор портативного ЗУ уже разряжен до критического уровня, но необходимо подзарядить телефон для экстренного звонка. В этом случае, нужно предусмотреть кнопку «Экстренного включения», чтобы использовать всё ещё имеющуюся в аккумуляторе энергию.

  5. Возможность заряда аккумуляторов портативного ЗУ от сетевого зарядного устройства с интерфейсом Mini USB. Так как зарядное устройство от телефона всё равно всегда берут с собой в дорогу, то можно его использовать и для заряда аккумуляторов портативного БП перед обратной дорогой.

  6. Одновременный заряд аккумуляторов ЗУ и подзарядка мобильного телефона от одного и того же сетевого зарядного устройства. Так как сетевое зарядное устройство от мобильного телефона не может обеспечить достаточный ток для быстрого заряда аккумулятора портативного ЗУ, то заряд может растянуться на сутки и более. Поэтому, должна быть возможность подключить телефон на заряд прямо во время заряда батареи портативного БП.

Исходя из этого технического задания, было построено портативное ЗУ на литий-ионных аккумуляторах.

Блок схема


Портативное ЗУ состоит из следующих узлов.

  1. Преобразователь 5 → 14 Вольт.
  2. Компаратор, отключающий преобразователь заряда при достижении напряжения на батарее литий-ионных аккумуляторов 12,8 Вольт.
  3. Индикатор заряда – светодиод.
  4. Преобразователь 12,6 → 5 Вольт.
  5. Компаратор 7,5 Вольт, отключающий ЗУ при глубоком разряде батареи.
  6. Таймер, определяющий время работы преобразователя при критическом разряде батареи.
  7. Индикатор работы преобразователя 12,6 → 5 Вольт – светодиод.

Импульсный преобразователь напряжения MC34063


Долго выбирать драйвер для преобразователя напряжения не пришлось, так как выбирать то было особенно не из чего. На местном радиорынке по разумной цене (0,4$) я нашёл только популярную микросхему MC34063. Сразу купил парочку, чтобы выяснить, возможно ли как-либо принудительно отключить преобразователь, так как в даташите на данный чип такая функция не предусмотрена. Оказалось, что сделать это возможно, если подать на вывод 3, предназначенный для подключения частотозадающей цепи, напряжение питания.

На картинке типовая схема понижающего импульсного преобразователя. Красным отмечена цепь принудительного отключения, которая может понадобиться для автоматизации.

В принципе, собрав такую схему, уже можно запитать телефон или плеер, если, например, питание будет осуществляться от обычных элементов питания (батареек).


Я не буду подробно описывать работу этой микросхемы, но из «Дополнительных материалов» вы можете скачать и подробное описание на русском языке, и небольшую портативную программу для быстрого расчёта элементов повышающего или понижающего преобразователя, собранного на этой микросхеме.

Узлы управления зарядом и разрядом литий-ионной батареи

При использовании литий-ионных батарей, желательно ограничивать их разряд и заряд. Я для этой целей использовал компараторы на основе копеечных микросхем КМОП. Микросхемы эти крайне экономичны, так как работают на микротоках. На входе у них стоят полевые транзисторы с изолированным затвором, что даёт возможность применить микротоковый же Источник Опорного Напряжения (ИОН). Где взять такой источник я не знаю, поэтому воспользовался тем обстоятельством, что в режиме микротоков, напряжение стабилизации обычных стабилитронов снижается. Это позволяет управлять напряжением стабилизации в некоторых пределах. Так как это не задокументированное включение стабилитрона, то, возможно, для обеспечения определённого тока стабилизации, стабилитрон придётся подобрать.

Чтобы обеспечить ток стабилизации, скажем, 10-20 мкА, сопротивление балласта должно быть в районе 1-2 МОм. Но, при подгонке напряжения стабилизации, сопротивления балластного резистора может оказаться, либо слишком маленьким (несколько килоом), либо слишком большим (десятки мегаом). Вот тогда придётся подобрать не только сопротивление балластного резистора, но и экземпляр стабилитрона.


Переключение цифровой КМОП микросхемы происходит тогда, когда уровень входного сигнала достигает половины напряжения питания. Поэтому, если запитать ИОН и микросхему от источника, напряжение которого требуется измерить, то на выходе схемы можно получить сигнал управления. Ну, а этот самый сигнал управления и можно подать на третий вывод микросхемы MC34063.

На чертеже изображена схема компаратора на двух элементах микросхемы К561ЛА7.

Резистор R1 определяет величину опорного напряжения, а резисторы R2 и R3 гистерезис компаратора.


Узел включения и идентификации зарядного устройства

Чтобы телефон или плеер начал заряжаться от разъёма USB, ему нужно дать понять, что это разъём USB, а не какой-то суррогат. Для этого можно подать на контакт «-D» положительный потенциал. Во всяком случае, для Blackberry и iPod-а этого достаточно. Но, моё фирменное зарядное устройство подаёт положительный потенциал ещё и на контакт «+D», поэтому я поступил точно так же.


Другое назначение этого узла – управление включением и выключением преобразователя 12,6 → 5 Вольт при подключении нагрузки. Эту функцию выполняют транзисторы VT2 и VT3.


В конструкции портативного ЗУ предусмотрен и механический выключатель питания, но его назначение скорее соответствует "выключателю массы" АКБ в автомобиле.

Электрическая схема портативного блока питания

На рисунке представлена схема мобильного блока питания.


C1, C3 = 1000µF

C2, C6, C10, C11, C13 = 0,1µF

C14 = 20µF (танталовый)

IC1, IC2 – MC34063


DD1 = К176ЛА7 R3, R12 = 1k R27 = 44M
DD2 = К561ЛЕ5 R4, R7 = 300k R28 = 3k
FU = 1A R5 = 30k VD1, VD2 = 1N5819
HL1 = Green R6 = 0,2Ом VD3, VD6 = КД510А
HL2 = Red R8, R15, R23, R29 = 100k VT1, VT2, VT3 = КТ3107
L1 = 50mkH R10, R11, R13, R26 = 1М VT4 = КТ3102
L2 = 100mkH R16, R24 = 22М Подбираются
R0, R21 = 10k R17, R19, R25 = 15k R14* = 2М
R1 = 180Ом R18 = 5,1М R22* = 510k
R2 = 0,3Ом R20 = 680Ом VD4*, VD5* = КС168А

Назначение узлов схемы.

IC1 – повышающий преобразователь напряжения 5 → 14 Вольт, который служит для заряда встроенной аккумуляторной батареи. Преобразователь ограничивает входной ток на уровне 0,7 Ампера.

DD1.1, DD1.2 – компаратор заряда батареи. Прерывает заряд по достижению 12,8 Вольт на батарее.

DD1.3, DD1.4 – генератор индикации. Заставляет мигать светодиод во время заряда. Индикация сделана по аналогии с зарядными устройствами Nikon. Пока идёт заряд, светодиод мигает. Заряд окончен – светодиод горит постоянно.

IC2 – понижающий преобразователь 12,6 → 5 Вольт. Ограничивает выходной ток на уровне 0,7 Ампера.

DD2.1, DD2.2 – компаратор разряда батареи. Прерывает разряд батареи при снижении напряжения до 7,5 Вольт.

DD2.3, DD2.4 – таймер экстренного включения преобразователя. Включает преобразователь на 12 минут, даже если напряжение на батарее упало до 7,5 Вольт.


Тут может возникнуть вопрос, почему выбрано такое низкое пороговое напряжение, если некоторые производители не рекомендуют допускать его снижение ниже 3,0 и даже 3,2 Вольта на банке?

Я рассуждал так. Путешествия случаются не так часто, как этого бы хотелось, поэтому батарее вряд ли придётся пережить много циклов заряда-разряда. Между тем, в некоторых источниках, описывающих работу литий-ионных батарей, напряжение 2,5 Вольта как раз называют критическим.

Но, Вы можете ограничить предельный разряд более высоким уровнем напряжения, если предполагается часто использовать подобное зарядное устройство.

Конструкция и детали

Выражаю благодарность Сергею Соколову за помощь в поиске компонентов конструкции!


Печатные платы (ПП) изготовлены из фольгированного стеклотекстолита толщиной 1мм. Размеры ПП выбраны исходя из размеров приобретённого корпуса.


Все элементы схемы, кроме аккумуляторной батареи, размещены на двух печатных платах. Причём на меньшей расположен только разъём Mini USB для подключения внешнего зарядного устройства.



Узлы БП были помещены в стандартный полистироловый корпус Z-34. Это самая дорогая деталь конструкции, за которую пришлось выложить 2,5$.


Выключатель питания поз.2 и кнопка принудительного включения поз.3 спрятаны заподлицо с внешней поверхностью корпуса, во избежание случайного нажатия.

Разъём Mini USB выведен на заднюю стенку корпуса, а разъём USB поз. 4 вместе с индикаторами поз. 5 и поз.6 на переднюю.


Размер печатных плат рассчитан так, чтобы зафиксировать аккумуляторы в корпусе портативного БП. Между аккумуляторами и другими элементами конструкции вставлена прокладка из электрокартона толщиной 0,5мм, согнутая в виде коробки.


This movie requires Flash Player 9

А это портативный БП в собранном виде. Потяните изображение мышкой, чтобы рассмотреть БП с разных сторон.


Настройка

Настройка портативного зарядного устройства свелась к подбору экземпляров стабилитронов и сопротивлений балластных резисторов для каждого из двух компараторов.



Как это работает? Видеоиллюстрация.

В трёхминутном видеоролике показано, как работает эта самоделка и что находится внутри. Формат видео – Full HD.


Зарядное устройство для мобильного телефона стало одной из самых нужных технологических мелочей в нашей жизни. Ведь без нее наш мобильник будет просто безжизненной коробкой. Но когда оно сломалась, телефон сел, а вы ждете важный звонок, придется поэкспериментировать и попытаться сделать зарядку самому.

Первая конструкция зарядного устройства предполагает использование USB-разъема компьютера или сетевого переходника, подключенного к розетке. Итак, для начала вам понадобится старая флешка, из которой нужно достать штекер, только будьте осторожны, чтобы не сломать плату на нем. Далее возьмите отрезок двужильного кабеля, зачистите с одной стороны контакты и начинайте нагревать паяльник. Теперь давайте изучим схему, которую отпаяли вместе со штекером. На ней вы увидите четыре контакта, центральные отвечают за передачу данных от компьютера на чипы памяти флешки, они нас не интересуют. А вот боковые отвечают за питание, к ним и следует аккуратно припаять тот кабель, что мы приготовили. Только для улучшения пайки не используйте кислоту, так как контакты довольно нежные и через некоторое время они могут испортиться.


На вторую сторону припаиваем штекер от старой зарядки, а один из проводков стоит изолировать: если вдруг они в собранном виде коснутся, короткого замыкания, из-за которого может сгореть телефон, не произойдет. После прозвоните конструкцию тестером, один щуп приложите на штекер зарядки, а второй – подносите по очереди к каждому контакту на USB. Теперь обмотайте оба конца изолентой – и можно заряжать телефон.


А если вы любитель туристических походов или просто проводите много времени в дороге, можно сделать переносную зарядку. Конечно, она будет уступать по производительности покупному аналогу, но обойдется вам во много раз дешевле. Для изготовления такого девайса вам понадобятся четыре батарейки АА типа, изолента, резистор на два Ома, штекер с кабелем от старой телефонной зарядки.


Далее соедините последовательно вместе все батарейки, то есть плюс должен прикасаться к минусу, после обмотайте изолентой, чтобы импровизированный «аккумулятор» держался, а для удобства соединения можете использовать пластмассовую коробочку. Теперь нужно протестировать эту конструкцию на наличие тока, для этого возьмите два проводка, один присоедините к плюсу, а второй к минусу и попробуйте на язык. Вы должны почувствовать легкое покалывание, как если лизнете контакты батарейки кроны. Если все получилось, возьмите резистор на два Ома и припаяйте его к плюсу нашего источника питания.


Затем нужно разобраться с кабелем от оригинальной зарядки. Внутри вы сможете увидеть идущие два, их и следует припаять плюсом к свободному концу резистора, а второй – к минусу аккумулятора. Все, уже можно заряжать телефон, но сначала понаблюдайте за процессом подзарядки несколько минут, если эта конструкция быстро нагревается, то вы перепутали полярность в проводках кабеля, и их требуется поменять местами.


Конечно, эти варианты подойдут только для простеньких телефонов вроде Nokia, так как для IPhone, новых моделей Samsung и тому подобных зарядки по конструкции намного сложнее.